内容简介
本书以Python机器学习常用技术与真实案例相结合的方式,深入浅出地介绍了Python机器学习应用的主要内容。全书共11章,分别介绍了机器学习概述、数据准备、特征工程、有监督学习、无监督学习、智能推荐的相关知识,并介绍了市财政收入分析案例、基于非侵入式电力负荷监测与分解的电力分析案例、航空公司客户价值分析案例、广电大数据营销推荐案例以及基于TipDM数据挖掘建模平台实现航空公司客户价值分析案例。每章都包含了课后习题,帮助读者巩固所学的内容。本书可以作为高校数据科学或人工智能的相关专业教材,也可以作为机器学习爱好者的自学用书。