书目

Python机器学习基础教程

内容简介

本书是机器学习入门书,以Python语言介绍。主要内容包括:机器学习的基本概念及其应用;实践中常用的机器学习算法以及这些算法的优缺点;在机器学习中待处理数据的呈现方式的重要性,以及应重点关注数据的哪些方面;模型评估和调参的方法,重点讲解交叉验证和网格搜索;管道的概念;如何将前面各章的方法应用到文本数据上,还介绍了一些文本特有的处理方法。本书适合机器学习从业者或有志成为机器学习从业者的人阅读。

作者简介

AndreasC.Müller,scikit-learn库维护者和核心贡献者。现任哥伦比亚大学数据科学研究院讲师,曾任纽约大学数据科学中心助理研究员、***公司计算机视觉应用的机器学习研究员。在波恩大学获得机器学习博士学位。SarahGuido,Mashable公司数据科学家,曾担任Bitly公司数据科学家。

目录

丛书

图灵程序设计丛书

—  END  —