内容简介
本书在Hopf代数表示范畴层面引入一些新的monoidal不变量,这些不变量包括表示范畴的Green环、Casimir数、高阶Frobenius-Schur指标、Grothendieck环、某种类型的多元齐次多项式等。著作主要研究这些不变量在Hopf代数表示理论中所发挥的作用,揭示这些不变量与Hopf代数表示范畴中其它重要研究对象之间的关系,通过具体实例展示这些不变量的具体表现形式等。这些不变量的引入为人们研究Hopf代数表示范畴的结构与分类提供了新的工具,也为人们深入理解与研究monoidal范畴提供了新的视角。本书所展示的一些研究成果对于推动代数表示理论体系的发展与完善,促进Hopf代数、张量范畴等数学分支的交叉与融合具有积极的作用。