书目

深度学习入门4:强化学习

内容简介

本书前半部分介绍强化学习的重要思想和基础知识,后半部分介绍如何将深度学习应用于强化学习,遴选讲解了深度强化学习的近期新技术。全书从最适合入门的多臂老虎机问题切入,依次介绍了定义一般强化学习问题的马尔可夫决策过程、用于寻找很好答案的贝尔曼方程,以及解决贝尔曼方程的动态规划法、蒙特卡洛方法和TD方法。随后,神经网络和Q学习、DQN、策略梯度法等几章则分别讨论了深度学习在强化学习领域的应用。本书延续‘鱼书‘系列的风格,搭配丰富的图、表、代码示例,加上轻松、简明的讲解,让人循序渐进地理解强化学习中各种方法之间的关系,于不知不觉中登堂入室。本书既适合深度学习的初学者,也适合对人工智能感兴趣的教师、学生和相关从业者学习参考。

作者简介

斋藤康毅,1984年出生于日本长崎县,东京工业大学毕业,并完成东京大学研究生院课程。目前在某企业从事人工智能相关的研究和开发工作。著有“鱼书”系列《深度学习入门:基于Python的理论与实现》《深度学习进阶:自然语言处理》《深度学习入门2:自制框架》,同时也是PythoninPractice、TheElementsofComputingSystems、BuildingMachineLearningSystemswithPython的日文版译者。【译者介绍】郑明智,智慧医疗工程师。主要研究方向为医疗与前沿ICT技术的结合及其应用。译有《深度学习基础与实践》《详解深度学习》《白话机器学习的数学》等书。

目录

—  END  —